A resilient world is built on humility

Featured

By David Salt

What helps keep a system resilient?

Of course, it depends on context, and everyone brings their own definitions to the party when answering this question. Which means you seldom find two people that will give you the same answer.

Yet, obviously, it’s a pretty important question.

Nine attributes

Towards the end of writing the book Resilience Thinking with Brian Walker, we asked many of the world’s most preeminent resilience scholars (including Buzz Holling) what they thought were the key lessons emerging from resilience science. They responded with a wide variety of answers, both in terms of length of response and areas covered. Even resilience experts vary in what they think is most important about the topic.

We didn’t have room in the book to reprint their responses so instead we attempted to distill their thoughts into a list of nine attributes of a resilient world. In summary, those attributes are:

1. Protect diversity: A resilient world promotes and sustains diversity in all forms (biological, landscape, social and economic).

2. Respect ecological variability: Resilience is about embracing and working with ecological variability, rather than attempting to control and reduce it.

3. Manage with modularity: Resilient systems consist of modular components. Failure in one component doesn’t collapse the system.

4. Acknowledge slow variables: There needs to be a focus on the controlling (often slowly changing) variables associated with thresholds.

5. Govern with appropriate feedbacks: A resilient world possesses tight feedbacks (but not too tight). Are the signals from cost/benefit feedbacks loosening?

6. Cultivate social capital: This is about promoting trust, well developed social networks and effective leadership.

7. Promote innovation: Resilience places an emphasis on learning, experimentation, locally developed rules and embracing change.

8. Govern with overlap: A resilient world would have institutions that include ‘redundancy’ in their governance structures, including a mix of common and private property with overlapping access rights.

9. Incorporate ecosystem services: A resilient world includes all the unpriced ecosystem services in development proposals and assessments.

It’s a good list (I’d even suggest a great list) though, of course, each attribute requires a lot of unpacking, explaining and illustration with examples (though, it did appear at the end of our book so readers who got this far were already in the frame).

But why only nine?

This was Brian’s idea: ‘Let’s set out nine attributes, one short of the biblical ten, and invite readers to suggest what attribute they would add to our list to complete it.’

I thought it was a dumb idea because a. I didn’t think we’d get much response (this was a science textbook after all), b. I suspected every reader would have their own idea (‘a resilient world would have lots of cats…’) and we’d just get a long list of pet thoughts with no emergent consistency; and c. what’s the point, how would we provide feedback to readers? This was a book afterall, not a monthly magazine.

The tenth (and 11th) attribute

As it turned out, I was wrong on all counts (hats off to you, Brian).

We received many hundreds of suggestions; most of them thoughtful, well considered and articulate.

And, while there was an enormous variety in the ideas being put forward (and no suggestion that cats would make for a more resilient world), there were clearly four themes constantly coming to the fore: democratization, fairness, learning and humility.

And, while we hadn’t planned on a follow-up book back when Resilience Thinking came out, it became apparent a few years later that people wanted more information on how resilience thinking can be implemented. Consequently, we wrote Resilience Practice, and included a discussion on the feedback we had received from readers of Resilience Thinking at the end.

Indeed, we added fairness and humility to our list of nine. Actually, we felt that the themes of democratization, fairness, learning and humility were all implicit to varying degrees in our original list of nine attributes. Our readers, however, obviously felt that equity and humility needed to be acknowledged explicitly; so we did. Here are the added two attributes to round off our list:

10. Enshrine fairness & equity: A (desirable) resilient world would acknowledge notions of equality among people, encourage democratization so that everyone has a say, a sense of agency, and promote the notion and practice of ‘fair trade’. These attributes would encourage diversity, innovation, collaboration and effective feedbacks while promoting higher levels of social capital.

11. Exercise humility: A resilient world would acknowledge our dependence on the ecosystems that support us, allow us to appreciate the limits of our mastery, accept we have much to learn, and ensure our people are well educated about resilience and our interconnection with the biosphere.

No panacea

Even if we adopted these 11 attributes as goals (even if we achieved them) there’s no guarantee that we will side step the looming shocks and changes currently facing our planet. However, a resilient world will be better placed come what may.

Which brings me to the end of this series of (relatively) ad hoc reflections on resilience thinking, what it is and why it’s worth knowing about. I’m not suggesting it will save the world; but I am certain it will provide new insights on the nature of the challenges facing us and why the complexity of the world makes these challenges so wicked. And, indeed, if we as a society are not prepared to acknowledge the complexity that lies at the heart of the challenge of sustainability, there is little hope of us meeting that challenge.

If you enjoyed this blog and would like to read any of my earlier pieces on resilience thinking, here’s a list of topics with links:

Why can’t we fix this? Because it’s complex
Introducing the notion that ‘complexity’ lies at the heart of our big challenges

Solving sustainability – It’s complicated AND complex. Do you know the difference?
‘Complexity 101’, complex is different to being complicated but most people mix them up

Thinking resilience – navigating a complex world
Ideas about resilience comes from many areas, most them are about working with complexity

The myth of the optimal state: adaptive cycles and the birth of resilience thinking
Buzz Holling and collapsing spruce forests. More control just made it worse

The perils of command and control and the pathology of Natural Resource Management
How the belief of mastery, blind application of efficiency and vested interests leads to a decline in a system’s resilience

On identity, complexity and a ‘little’ fossil fuel project off the West Australian coast
The identity of a system drives decision making above and beyond rationality

Death of the Queen, identity and a sustainable world
Thinking of ‘the Crown’ as a complex adaptive system (RIP Queen Elizabeth II)

Losing it – the consequences of stepping over the threshold
When a system crosses a threshold, it loses its identity

To be or not to be? It’s really a question about whether we adapt or transform
Adaptation and transformation, two important concepts in resilience thinking that most people use interchangeably without much thought

Resilience – the good, the bad and the ugly
Resilience thinking is almost always inspirational, but it’s also ambiguous and politicians love hiding behind it

Banner image: Maybe if Moses had shown a little more humility, the 10 Commandments might have been a tad more resilient. (Image by Jeff Jacobs from Pixabay)

The perils of command and control and the pathology of Natural Resource Management

Featured

By David Salt

As a younger man I honestly believed that sustainability was a tractable problem; a difficult challenge no doubt but one that was solvable with hard work coupled with science and technology. And, as a confident young thing, I thought I could contribute to this outcome by serving in the area of science communication and education; get more talented young people into science, and increase community acceptance of emerging technological solutions so they can be effectively implemented.

How might science and technology save us? By providing us with insights on the many problems being faced by humanity and the environment, and by helping humanity lighten its footprint on Planet Earth. Well, science has definitely provided ample insights on the plight of our planet, and technology has given us so many ways to be more efficient in how we do things.

For all that, however, we are moving away from being sustainable; indeed, we seem to be accelerating away from it. In the last half century, humanity has pushed the Earth system over several planetary boundaries, unleashed a sixth extinction event, and seems unable as a global community to do anything about greenhouse gas emissions which are remorselessly on the increase (as a by-product of our addiction to economic growth).

Science and technology has underpinned so much of our wealth creation and economic activity, and many techno-boosters are fervent in their belief that science and technology is the solution to the many problems facing our environment (indeed, I heard Australia’s Chief Scientist say this exact thing on the radio this morning, as I write.)

As I grew older and watched the natural world decline around me (on a number of scales; think of weed infestation in your local bush reserve, glacial retreat or the bleaching of the Great Barrier Reef), my enthusiasm for (and faith in) science and technology also declined. I could see the potential of all these new discoveries (think renewable energy, nanotech and biotech as examples) but could never see where the outcomes were creating a more sustainable future. For example, for every 10% improvement in efficiency in process X, we seemed to see 100% increase in people using that process resulting in more waste, more consumption and more damage (albeit less impact per capita, see the Rebound Effect for a discussion on this).

The dangers of partial solutions

It’s not that I’m anti science and technology and I do believe increasing efficiency is important. However, by themselves they are not enough.

Then I was asked to write a couple of books on resilience science (Resilience Thinking and Resilience Practice) and my doubts on the belief that ‘science and technology is the solution’ crystallised into a new way of looking at the world. The experience of writing about resilience opened my eyes to ideas of complexity, and the capacity of a complex systems to absorb disturbance and retain their identity (the definition of resilience). The consequences of these ideas are deep and far reaching. In a range of different ways, I’ve been attempting to articulate them in my stories for Sustainability Bites.

One major consequence of acknowledging the complexity around us is to be aware of the cost of partial solutions sold to us as complete answers. Science and technology (and endlessly increasing efficiency) are not only not enough to move us to being sustainable, an exclusive reliance on them (and belief in them, think ‘technology not taxes’) will actually reduce resilience in the systems we depend upon and make us more vulnerable to disturbance.

There are many lines of evidence supporting this contention (see Resilience Thinking and Resilience Practice) but in the space I have here I’d like to discuss how natural resource management agencies decline over time. Improving science and technology (and efficiency) is often touted as the solution but only fuels this decline. This discussion is based on a landmark paper by CS Holling (one of the founding fathers of resilience thinking) and Gary Meffe, written a quarter of a century ago: Command and Control and the Pathology of Natural Resource Management.

The command-and-control pathology

Holling and Meffe point out that when command and control is applied in natural resource management, the initial phase is nearly always quite successful. Insect pests are reduced by pesticide use; fishing and hunting are enhanced by stocking or predator removal; forest fires are suppressed for years; floods are minimized by levees and dams.

But what follows on these initial successes is rarely acknowledged. The agencies responsible for management shift their attention from the original social or economic purpose towards increasing efficiency and a reduction in costs. (Of course, all agencies/companies do this over time not just NRN agencies. It’s a pattern well described in the idea of ‘adaptive cycles’ first proposed by Holling.)

NRM agencies search for better and more efficient ways to kill insects, eliminate wolves, rear hatchery fish, detect and extinguish fires, or control flows. Priorities thus shift from research and monitoring (why ‘waste’ money studying and monitoring apparent success?) to internal agency goals of cost efficiency and institutional survival.

Holling and Meffe contend that as this happens, there is a growing isolation of agency personnel from the systems being managed and insensitivity to public signals of concern. They describe this as institutional myopia and increased rigidity (again, something well described by the theory of adaptive cycles).

At the same time, economic activities exploiting the resource benefit from success (of more fish, or water or whatever) and expand in the short term. We see greater capital investment in activities such as agricultural production, pulp mills, suburban development, and fishing and hunting. There’s nothing wrong with this, they say, within limits.

But the result is increasing dependency on continued success in controlling nature while, unknown to most, nature itself is losing resilience and increasing the likelihood of unexpected events and eventual system failure. When natural systems are ‘controlled’ they invariably lose their natural diversity and processes, which leads to a declining ability to absorb disturbance (while maintaining its identity).

With dependency comes denial and demands by economic interests to keep and expand subsidies, and pressure for further command and control.

So, the initial successes of command and control come with a costs that are usually never acknowledged. Command and control reduces natural variation and erodes resilience, environmental managers aim for efficiency rather than connection with the system they are managing, and economic interests that benefit from original command and control distort the system to maintain it. The composite result is increasingly less resilient and more vulnerable ecosystems, more myopic and rigid institutions, and more dependent and selfish economic interests all attempting to maintain short-term success.

Holling and Meffe point out that solutions to this pathology cannot come from further command and control (for example, stronger regulations) but must come from innovative approaches involving incentives leading to more resilient ecosystems, more flexible agencies, more self-reliant industries, and a more knowledgeable citizenry.

Back in the ‘real world’, you’ll largely hear our political leaders deny the complexity of this and simply say science and technology will save us. Unfortunately, in a complex world, simple solutions have a habit of only making the situation worse.

Don’t get me wrong, I still love science and technology. However, by themselves, they are not the solution. To contribute to a sustainable world, they need to work with complexity, not subjugate it.

Banner image: Dams are an important piece of human infrastructure offering many valuable short-term benefits by controlling our rivers. In the longer term they come with a range of often unacknowledged costs. They reduce the natural variability of the river; they encourage human settlement in areas subject to flooding; and allow food production in areas that normally wouldn’t support agriculture. Over time, the agencies managing the dam become myopic and rigid, the economic sectors depending on the dam become increasingly reliant and selfish, and the river system becomes increasingly vulnerable to disturbances. (Image by David Salt)

The myth of the optimal state: adaptive cycles and the birth of resilience thinking

Featured

By David Salt

Being sustainable, is tough. So far, we (as in humanity) are failing at the task miserably. My contention is that a big part of the problem is our inability to deal with the complexity of the systems around us, that we are a part of. Rather than acknowledging this complexity, we impose framings on these systems treating them as simple. (I discussed these ideas in complicated vs complex.)

Command and control

Simple systems can be managed and controlled, and held in an optimal state for as long as needed. Complex systems, on the other hand, self-organise around our efforts to control them. They can’t be held in an optimal state.

The notion of an ‘optimal sustainable yield’ was a widespread idea in natural resource management last century. The belief was that if you knew a little about what drives a natural resource (say reproductive capacity in fish stocks or forest trees), you could harvest that system removing an optimal amount of that resource forever as it would always replace itself. It’s a command-and-control approach that left countless collapsed fisheries and degraded landscapes in its wake.

‘Command and control’ involves controlling aspects of a system to derive an optimized return. The belief is that it’s possible to hold a system in a ‘sustainable optimal state’.

However, it’s not how the world actually works. Yes, we can regulate portions of the system, and in so doing increase the return from that portion over a short time frame, but we can’t do this in isolation of the rest of the system. If we hold some part of the system constant, the system adapts around our changes, and frequently loses resilience in the process (ie, loses the capacity to recover from a disturbance).

While we can hold parts of the system in a certain condition, the broader system is beyond our command. Indeed, no one is in control; this is a key aspect of complex adaptive systems.

Resilience thinking is an alternate approach to working with these systems, an approach that places their complexity front and centre. And the origins of this approach are entwined with an early realisation that a command-and-control approach to harvesting natural systems will always strike problems eventually. (The following example is based on a discussion that appears in the book Resilience Thinking.)

Of budworms and social-ecological systems

Spruce fir forests grow across large areas of North America, from Manitoba to Nova Scotia and into northern New England. They are the base of a highly valuable forestry industry.

Among the forests’ many inhabitants is the spruce budworm, a moth whose larvae eat the new green needles on coniferous trees. Every 40 to 120 years, populations of spruce budworm explode, killing off up to 80% of the spruce firs.

Following World War II, a campaign to control spruce budworm became one of the first huge efforts to regulate a natural resource using pesticide spraying (thanks in part to new technologies emerging from the war).

Initially, the pest control proved a very effective strategy, but like so many efforts in natural resource management that are based on optimizing production, it soon ran into problems.

In a young forest, leaf/needle density is low, and though budworms are eating leaves and growing in numbers, their predators (birds and other insects) are easily able to find them and keep them in check. As the forest matures and leaf density increases the budworms are harder to find and the predators’ search efficiency drops until it eventually passes a threshold where the budworms break free of predator control, and an outbreak occurs.

While the moderate spraying regime avoided outbreaks of budworms, it allowed the whole forest (as distinct from individual patches) to mature until all of it was in an outbreak mode. Outbreaks over a much greater area were only held in check by constant spraying (which was both expensive and spread the problem).

The early success of this approach increased the industry’s dependence on the spraying program, intensified logging and spawned the growth of more pulp mills.

Now there was a critical mass of tree foliage and budworms. The whole system was primed for a catastrophic explosion in pest numbers. The managers in this system were becoming locked into using ever increasing amounts of pesticide because the industry wouldn’t be able to cope with the shock of a massive pest outbreak. The industry had little resilience, and yet the continued use of chemicals was only making the problem worse. They had created a resource-management pathology.

Adaptive cycles

The industry acknowledged the looming crisis and engaged ecologists (including CS ‘Buzz’ Holling) to see how they might tackle the problem from a systems perspective. In 1973, Holling proposed a new analysis of the dynamics of the fir forests, one based on what he described as ‘adaptive cycles’.

Forest regions exist as a patchwork of various stages of development. The cycle for any one patch begins in the rapid growth phase, when the forest is young. The patch then proceeds through to maturity, and eventually, following some 40 to 120 years of stable and predictable growth (referred to as the ‘conservation phase’), the cycle tips into the release phase. The larvae outstrip the ability of the birds to control them, larvae numbers explode, and the majority of forest trees in that patch are killed. Their rapid demise opens up new opportunities for plants to grow, and during the reorganization phase the forest ecosystem begins to re-establish itself. The cycle then repeats.

With this understanding of the cycle and the key changing variables that drive the system, the forest managers were able to fundamentally modify the manner of their pest control. Rather than continually using low doses of pesticide over wide areas they switched to larger doses applied less frequently at strategic times over smaller areas. They re-established a patchy pattern of forest areas in various stages of growth and development rather than keeping wide areas of forest primed for a pest outbreak.

The forest industry also changed through the process, moving to regional leadership with a greater awareness of the ecological cycles that underpinned the forest’s productivity.

From budworms to resilience thinking

The case study of the spruce budworm and the fir forest is important on many levels as it was in part the genesis of what has become resilience thinking. During his investigations, Holling proposed that the key to sustainability was an ecosystem’s capacity to recover after a disturbance, not the ability to hold it in a notional optimal state.

He also recognized that the ecosystem and the social system had to be viewed together rather than analyzed independently, and that both went through cycles of adaptation to their changing environments. Adaptive cycles don’t just happen in nature, they happen in communities, businesses and nations, it’s feature of complex adaptive systems.

His proposal catalyzed the thinking of ecologists and researchers (with an interest in systems) all over the world because similar patterns were being identified everywhere social-ecological systems were being studied.

One key insight that grew out of an understanding of adaptive cycles is that bringing about change/reform in a social-ecological system is always difficult. However, windows of opportunity do open when a system goes into a release phase, although the window doesn’t open for long. You need to be prepared to seize the opportunity while it’s there.

A basic lesson I draw from the notion of adaptive cycles is that systems get locked into themselves over time and become rigid. There’s no such thing as a sustainable optimal state because even if the system is managed into a condition deemed desirable, it then progressively loses its capacity to learn, innovate or keep its flexibility (often in the name of efficiency). Efficiency is important but is never the complete answer. Efficiency is not the key to sustainability.

Over the decades since Holling first described adaptive cycles, the models and the thinking associated with managing for resilience has gone through much refinement but the two core ideas remain at its heart: the fact that social-ecological systems constantly move through adaptive cycles over many linked scales, and that they can exist in different stable states. I’ll discuss this second building block in my next blog.

Banner image: Spruce fir forests provide valuable timber. However, efforts to optimise these systems last century with the widespread application of pesticide almost destroyed the industry. Uncovering what was going wrong became the origins of resilience thinking. (Image by Reijo Telaranta from Pixabay.)